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Non-parallel effects which are due to the growing boundary layer are investigated by 
direct numerical integration of the complete Navier-Stokes equations for in- 
compressible flows. The problem formulation is spatial, i.e. disturbances may grow 
or decay in the downstream direction as in the physical experiments. In  the past 
various non-parallel theories were published that differ considerably from each other 
in both approach and interpretation of the results. In this paper a detailed 
comparison of the Navier-Stokes calculation with the various non-parallel theories 
is provided. It is shown, that the good agreement of some of the theories with 
experiments is fortuitous and that the difference between experiments and theories 
concerning the branch I neutral location cannot be explained by non-parallel effects. 

1. Introduction 
For a disturbance environment with very small amplitudes, the first stage of the 

transition process in a flat-plate boundary layer is governed by the amplification of 
two-dimensional disturbances. The development during this first stage, in particular 
the growth or decay of the so-called Tollmien-Schlichting waves is well described by 
the linear stability theory (Heisenberg 1924; Tollmien 1929 ; Schlichting 1933). 
Historically, in this stability theory the temporal approach was considered first : for 
this, the growth or decay of the disturbances was assumed to be in time direction. 
However, in the pioneering experiments by Schubauer & Skramstad (1947) it was 
clearly shown that the disturbance development was in the downstream direction, 
with amplitudes of the disturbances growing or decaying with increasing distance 
from the leading edge. Schubauer & Skramstad used the phase velocity of the 
disturbance waves for comparing measurement with theory. Gaster (1962) has 
shown, however, that the use of the phase velocity for relating the temporal 
development of the theory with the spatial development of the experiments, as done 
by Schubauer & Skramstad, was only approximately correct. Thereupon, as 
suggested by Gaster (1965), the stability problem was reformulated into a ‘spatial’ 
approach (see for example Jordinson 1970) which allowed a direct comparison of 
theory and experiment. 

Nevertheless, qualitative and quantitative differences between the spatial theory 
and experiments remained. The discrepancies were attributed to the so-called non- 
parallel effects which were excluded in the standard quasi-parallel theory (Jordinson 
1970). In  this theory it was argued that owing to the slow growth of the boundary 
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layer, the assumptions of a parallel base flow U = U(y) ,  V = 0 and of a disturbance 
amplitude distribution that is only dependent on the normal coordinate y (and not 
on the downstream coordinate 2) would be justified. With these assumptions the 
governing equations (linearized Navier-Stokes equations for the disturbance flow) 
became separable and lead to an ordinary differential equation, the Orr-Sommerfeld 
equation, that is amenable to numerical solutions. However, at that time it was not 
obvious what consequences the parallel assumption would have. When the parallel 
theory did not fully agree with the experimental measurements (in particular with 
respect to the growth rates and the critioal Reynolds number) the parallel 
assumption was suspected to be responsible. Consequently, efforts were made to 
remedy the situation by attempting to include the non-parallel effects resulting from 
the boundary-layer growth in the downstream direction. 

The efforts to predict the amplification behaviour of the disturbances more 
accurately were not only driven by academic motives, Rather, the demands of 
engineering design required a more accurate prediction of the transition location. For 
example, the most commonly used methods for transition prediction (eN methods, by 
Smith & Gamberoni 1966 ; Van Ingsn l956), require accurate numbers for the growth 
rates of the two-dimensional waves. Further, in modern efforts of transition eontrol 
by both passive (such as heating/caoling, suctiop/blowing) or active control (wave 
cancellation by feedback control, see Liepmann, Brown & Nosenchuck 1982 ; 
Liepmann & Nosenchuck 1982) an accurate aacount concerning the efficiency of 
these measures can only be made if the effects of the non-parallel base flow are 
understood. 

One of the first attempts to account for the non-parallel effects was by Barry & 
Ross (1970) who allowed V + 0 and included some of the streamwise derivatives of 
the base flow 80 that the governing equations still remained separable. These 
corrections lead to an only slightly better agreement with the experiments (Ross 
et al. 1970; Schubauer & Skramstad 1947) as the unstable region became only 
moderately enlarged. In particular, the critioal Reynolds number (based on the 
displacement thickness) decreased to Recri, = 500 from Recrlt = 520 for the parallel 
theory. Other attempts based on expansion procedures (for example by Lanchon & 
Eckhaus 1964; Volodin 1973; Ling & Reynolds 1973) were also not successful in 
explaining the discrepancies between 6xperiments and theory. 

On the other hand, upon publication of two papers by Bouthier (1972, 1973) the 
discrepancy appeared to be resolved at first as the neutral loop obtained from his 
analysis matched the experimental neutral points of both Schubauer & Skramstad 
and Ross et al. In his analyds Bouthier applied the method of multiple scales to 
separate out the small pararnetm that controlled the distortion of the coordinates 
from the viscous terms in the governing equation. 

closer examination of Bouthier’s analysis and the results obtained 
with it revealed that the agreement was rather fortuitous. Bouthier introduced the 
concept of ‘partial ’ and ‘total’ instability, In judging stability or instability 
Bouthier measured the streamwise decay or growth of the local kinetic energy e = 
d2 + u‘2 (overbar denotes the time average over one period). For total instability the 
kinetic energy increases a t  all 7 values (7 = y[Um/(2sv)$), boundary layer similarity 
coordinate) when following the disturbance on trajectories 7 = constant in the 
downstream direction. For partial instability, following along constant 7, the kinetic 
energy increases for at least one 7 location while decreasing at  other 7 locations. 
When comparing his results with experiments, Bouthier used the neutral points from 
his analysis that, based on his partial stability concept, resulted in the lowest possible 

However, 
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Reynolds number for branch I and resulted in the highest possible Reynolds number 
for branch I1 of the neutral stability curve. This interpretation lead to a considerably 
increased instability region with a critical Reynolds number of approximately 
Recrit = 350 and consequently lead to a much better agreement with the experiments. 
However, this comparison with the experiments is not a proper one because (a) the 
experimental measurements were for the u’ disturbance and not for the kinetic 
energy and ( b )  the experimental neutral points were obtained by following the u’ 
disturbances either at a constant distance from the wall (Schubauer & Skramstad) or 
at a constant 7 as in Ross et al. 

In a fundamental study on non-parallel effects, Gaster (1974) has clearly shown 
that stability characteristics and thus the locations of the neutral points depend 
strongly on the criteria used. Therefore, when comparing theoretical results with 
experimental measurements or numerical simulations it is essential that identical 
criteria are used for defining instability. Gaster used an analysis different from 
previous attempts. His analysis is in a sense more direct although an iteration scheme 
is employed to develop a series. For this, the parallel flow approximation serves as 
a suitable trial solution and successive correction terms lead to a series in descending 
powers of Re$. 

With this non-parallel theory Gaster has investigated the effect of different criteria 
(such as the kinetic energy integral 

E = 1: (d2 +v“2)  dy or E,  = ii’2dr], 

inner (first) and outer (second) maximum of u’) on the stability characteristics and 
in particular also on the neutral curve. Gaster clearly demonstrated that different 
criteria can affect the neutral curve and thus the critical Reynolds number. However, 
none of the criteria that he considered lead to the neutral loops and low critical 
Reynolds number that were obtained by Bouthier. In particular, in a proper 
comparison with the experiments, i.e. using the same criteria for judging stability a8 

in the experiments, the neutral curves of Gaster’s theory do not coincide as closely 
with the experimental points of Schubauer & Skramstad nor with those of Ross et al. 
Although the non-parallel effects obtained by Gaster reduced the critical Reynolds 
number from 520 (for parallel theory) to about 480, the deviation from the 
experimental critical Reynolds number obtained by Ross et al. of approximately 400 
still remained significant. 

Based on a non-parallel analysis using multiple scales Saric & Nayfeh (1975) 
calculated a correction for the eigenvalues which lead to non-parallel growth rates 
that represented a markedly bigger deviation from the parallel results than those 
obtained by Gaster. Especially, the neutral loop enclosed a much larger unstable 
region and appeared to match the experimental data remarkably well, in particular 
also for branch I and the high frequencies (see figure 1 of Saric & Nayfeh 1975). The 
critical Reynolds number obtained was about 400, as that of Ross et al. However, this 
paper did not address the issue of how different criteria may affect the results. This 
question was discussed in a later paper (Saric & Nayfeh 1977) and it was mentioned 
that the neutral curve given in the earlier paper (Saric & Nayfeh 1975) would relate 
to the first maximum of the %‘-disturbance. 

Smith (1979) investigated non-parallel effects by using the triple-deck theory. In 
his analysis the parallel-flow solution is the leading term and the non-parallel effects 
emerge from the asymptotic expansions. Although the theory is strictly valid for 
large Reynolds numbers only, comparison was also made for smaller Reynolds 

1: 
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numbers. In  general, the non-parallel effects appear to be stronger than in the 
analysis by Gaster (1974). However, as stated by Smith, his analysis should yield 
results identical to those of the theory by Gaster if in both approaches infinitely 
many terms were used. 

Another non-parallel analysis by Van Stijn & Van de Vooren (1983) using an 
approach different from both Gaster and Saric & Nayfeh yielded results very close 
to those by Gaster, thus supporting Gaster’s analysis. More recently, an analysis by 
Bridges & Morris (1987) which is similar to that of Saric & Nayfeh (1975) yielded non- 
parallel effects that at  first sight appear to be somewhat stronger (based on a neutral 
curve given in the paper) than those of Gaster, although no direct comparison was 
presented with either Gaster or Saric & Nayfeh. 

In summary, to date a number of non-parallel analyses have been presented which 
yield results that in some instances match the experimental data very well but at the 
same time disagree with other non-parallel theories. The discrepancies may be due to 
deficiencies in the theoretical models as in all analyses certain terms had to be 
neglected to keep the problem separable. Therefore, in all these analyses the non- 
parallel effects could only be considered approximately. Thus, differences between 
the theories may be due to the different judgement by the authors of which terms are 
relevant and have to be kept, and which are not and could be safely neglected. In 
addition, differences may be due to the different interpretation and the true meaning 
of the results. 

Because of this somewhat confusing picture, with the present study an attempt 
was made to investigate non-parallel stability effects based on a model that includes 
all possible effects. Therefore, no bias is introduced as to which terms are relevant 
and which are not. The present study is based on the complete Navier-Stokes 
equations. However, since no assumptions concerning the base flow are made, the 
problem remains unseparable and does not reduce to ordinary differential equations. 

Therefore, the Navier-Stokes equations for two-dimensional, incompressible flows 
are solved directly using an accurate numerical procedure. This approach in a sense 
represents a direct numerical simulation of the laboratory experiments by Schubauer 
& Skramstad or Ross et al., as well as others, where the response of the boundary 
layer to a local wavemaker (for example, a vibrating ribbon) subjected to different 
frequencies was investigated. In particular, our model is a spatial one which allowed 
direct calculation of the spatial downstream development of the disturbance waves 
as observed in the laboratory experiments. 

Thus, our calculations allow direct and detailed comparison of the results with the 
measurements in experiments on one hand and with results from the various non- 
parallel theories on the other. These calculations should help to shed light on the 
discrepancies between the various non-parallel theories and between the theories and 
experiments. 

In this paper, after a brief discussion of the numerical model which is based on the 
complete Navier-Stokes equations, relevant results of our calculations are presented 
and are compared in detail with results from non-parallel theories and experimental 
measurements. 

2. Numerical model 
In this paper, the effects of the boundary-layer growth on the stability (‘non- 

parallel effects ’) are investigated by direct numerical simulations based on the 
complete NavierStokes equations. The numerical model is similar to the one used 
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in Fasel (1974, 1976). In  particular, the model is a spatial one, thus allowing a 
spatially growing boundary layer, and allowing the amplification of the disturbances 
in the downstream direction. All possible non-parallel effects are included in this 
model. In fact, in this model the nonlinear effects are included also. However, for the 
results presented in this paper the nonlinear effects are negligible owing to the 
extremely small disturbance amplitudes used in these calculations. 

2.1. Governing equations 

In the present investigations, the Navier-Stokes equations for two-dimensional 
incompressible flows are used in a vorticity-velocity formulation with the vorticity 
transport equation 

aw aw aw 
- + u - + v -  = v20 
at ax ay  

and two Poisson equations for the two velocity components u and v in the x-  and y -  
direction, respectively 

aw 
v2u = -, 

a Y  

The Poisson equations result from the definition of vorticity 

and the continuity equation 
au av 
ax ay 
-+- = 0. 

Equations (2.1)-(2.5) are dimensionless. The dimensionless quantities relate to the 
corresponding dimensional ones, denoted by overbars, as follows : 

8, is the freestream velocity, is a reference length, E,, the distance from the leading 
edge (see figure 1) and Re is a Reynolds number defined as Re = om L/rwhere Pis the 
kinematic viscosity. The Laplace operator V2 in equations (2.1)-(2.3) is then given by 

The governing equations (2.1)-(2.3) are solved numerically in a rectangular domain 
shown schematically in figure 1. A set of boundary conditions and initial conditions 
is required for the solution of this system of equations. 

11 FLM 221 
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FIGURE 1. Integration domain. 

2.2. Boundary and initial conditions 
The specification of proper boundary conditions and their implementation into the 
numerical method is an issue of great complexity for the problem at hand. The 
concerns and difficulties in association with such direct numerical simulations were 
discussed earlier in great detail (see Fasel 1974, 1976, 1979) and will, therefore, not 
be repeated here. Rather, we will only summarize the set of boundary conditions 
which was selected and used for the present study. 

For the calculation of the unsteady disturbed flow an initial condition is required. 
For this the flow variables are specified in the entire integration domain for an initial 
time to 

(2.6) I u(x,  y, to) = U(x, y), 

v(x, y, t o )  = w, y), 

o(x ,  y, to) = a(%, y), 

where the initial flow field U, F', D is obtained from the numerical solution of the 
Navier-Stokes equations (2.1)-(2.3) for the steady boundary-layer flow, that is, 
without the term awlat in equation (2.1). Thus, with such an initial condition, the 
flow is initially undisturbed and the disturbances are then introduced during the 
unsteady cycle of the computation. 

At  the inflow boundary A-D at x = 0 Blasius profiles (index B1) are specified for 
the calculation of the steady flow 

u(o, y) = uB1(o, Y), v(o, y) = vB1(o, Y), 9) = wB1(o, y). (2.7) 

For the unsteady calculation at  A-D, time-periodic perturbations can be super- 
imposed onto the Blasius profiles : 
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The perturbation functions up, vp, wp are obtained from the eigensolutions of the 
OrrSommerfeld equation, where non-parallel effects on the eigenfunctions are 
neglected. As will be shown later, non-parallel effects on the eigenfunctions are very 
small and can therefore be justifiably neglected for this disturbance generation. With 
this, realistic Tollmien-Schlichting-type disturbances can be generated which 
propagate downstream and are amplified or damped in the downstream direction 
depending on the local Reynolds number. Thus, the disturbance behaviour is as in 
the laboratory experiments when the disturbance wave is generated by a local 
wavemaker, such as a vibrating ribbon (Schubauer & Skramstad; Ross et al.; 
Kachanov, Kozlov & Levchenko 1979) or a heater strip (Liepmann et al. 1982). 

An alternative method also used here to generate the disturbances is by periodic 
blowing and suction through a narrow strip at  the wall as discussed in connection 
with the boundary conditions at  the wall. 

Along the wall on boundary A-B the boundary conditions for the steady flow are 

U(x,O) = 0, (2.9) 

and for the unsteady flow 

(2.10) 

aw(x, 0, t )  a 2 q X ,  0, t )  i a y ( X ,  t ) .  

ax aye Re ax2 
- - _  --- 

The condition for the vorticity is obtained from the Poisson equations (2.3) for the 
w-velocity component. 

Thus, at  the wall we have no slip but we assume a permeable wall to allow for a 
time-dependent localized blowing and suction when the alternative method is used 
to generate Tollmien-Schlichting waves as mentioned before. For example, for the 
results presented in this paper we used f(x, t )  = f,(x) sin (Pt), where is the disturbance 
frequency and for fi 

f, = 15.1875 5'-35.4375 t4+20.25 t3 (2.11) 

was used (see figure 1) ,  with 

and 

This distribution produced clean localized vorticity disturbances and caused 
negligible time-dependent changes of the mean flow. Detailed comparison with 
calculstions where the disturbances were introduced through the inflow boundary 
has shown that with disturbances generated by localized blowing and suction 
(Konzelmann, Rist & Fasel 1987) the downstream development is the same as with 
the disturbances generated at the inflow boundary except near the blowing and 
suction strip. The disturbance generation at the inflow boundary using (2.8), 

11-52 
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however, allows for a shorter x-integration domain because the local generation of 
the waves by a localized wavemaker requires additional integration domain and 
adequate local numerical resolution. On the other hand, the disturbance generation 
employing the blowing and suction strip represents a more realistic situation, and is 
also applicable for large-amplitude calculations (not considered here) for which the 
use of linear eigenfunctions a t  the inflow boundary is not justified. 

At the outflow boundary B-6' we use, for the steady flow calculations, 

and for the unsteady flow calculations, 

(2.12) 

(2.13) 

where the prime denotes the disturbance variables 

u! = u-u, = v-v, wI = Q - w ,  (2.14) 

where a is the local wavenumber of the disturbance waves, a = 2n/A ( A  is the 
wavelength). The values for a can be taken from either the local solution of the 
Orr-Sommerfeld equation where a correction could be made for the non-parallel 
effects on the wavenumber. Or, a could be determined iteratively as suggested in 
Fasel (1974, 1979). However, for the present investigations values for a were simply 
taken from the local Orr-Sommerfeld solution without non-parallel correction. 
Numerous test calculations have shown that for small amplitudes the upstream 
effect of these outflow conditions was relatively small even if very approximate 
values for a were used. For example, for a values differing up to +50% from the 
Orr-Sommerfeld values, the Navier-Stokes solution was practically not affected for 
more than one wavelength upstream of the outflow boundary. In  summary, 
boundary conditions (2.13) in combination with governing equations (2.1)-(2.3) allow 
for smooth propagation of small-amplitude waves through the outflow boundary, 
where the strong insensitivity of the Navier-Stokes results with regard to variations 
of a in these boundary conditions was of particular advantage. 

The free-stream boundary C-D is assumed to  be far enough from the wall 
(typically six to fourteen displacement thicknesses) so that the assumption of an 
inviscid flow is justified. Therefore, for the steady calculation we are using the 
boundary conditions 

U ( Z ,  Y )  = 1, 

aY 
===, I (2.15) 
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For the calculation of the unsteady flow the disturbance velocity 
assumed to decay exponentially while the vorticity vanishes : 
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components are 

(2.16) 

w ( x ,  Y )  = 0. 

As for the outflow conditions (2.13), for the present calculations the values for a in 
(2.16) were also taken from the Orr-Sommerfeld solution without a non-parallel 
correction. Test calculations have shown that deviations of a due to non-parallel 
corrections would have been too small to affect the numerical Navier-Stokes 
solutions within the integration domain when the free-stream boundary was 
sufficiently far away from the flat plate (for the present calculations Y x 66, a t  the 
outflow boundary). As seen later from the results (figure 4) w = 0 at the free-stream 
boundary is well justified. However, analogous conditions for u’ and v‘ (i.e. u’ = 0, 
d = 0) would not be appropriate. u’ and v‘ decay rather slowly in the y-direction and 
therefore a rather large domain in y would be required if u’ = 0, v’ = 0 were to be 
used. Therefore, use of the conditions (2.16) allows a much smaller y-domain and thus 
considerable savings in computer memory and computer time. Another possible 
option, namely that of a coordinate transformation in the y-direction such that a 
domain from y = 0 to  y = co would be mapped onto a finite domain, say from 0 to 
1 ,  was rejected for this study. Although this would allow the use of Dirichlet 
conditions u’ = 0 and v’ = 0 a t  y = co, difficulties arise when a finite-difference 
method is used (as in the present study, see $2.3). With such a transformation, a so- 
called artificial viscosity (see Roache 1982) may be introduced, which of course may 
affect the numerical results and may therefore render the detailed quantitative 
comparison somewhat ambiguous. 

2.3. Numerical method 
The governing equations (2.1)-(2.3) together with the boundary conditions specified 
in $2.2 are solved numerically using a finite-difference method. The method is based 
on the fully implicit difference method with second-order accuracy in time and in the 
x- and y-direction (Fasel 1976). However, for the present study the accuracy in the 
spatial coordinates x and y was increased from second to fourth order as discussed 
in Bestek (1980). The considerably higher accuracy allows much more accurate 
computations and/or lower computation times, because of the larger grid sizes that 
can be used for equal accuracy when compared to an analogous calculation with 
second-order accuracy. Since one of the major objectives of the present study is a 
detailed, reliable comparison with various non-parallel theories, emphasis here is 
clearly on accuracy. 

The difference equations resulting from the fully implicit method are solved using 
a coupled line iteration procedure as discussed in Fasel (1974) and Bestek (1980). 

3. Numerical results 
Results of a number of calculations are presented. The calculation cases were 

selected to allow comparison with the results of various non-parallel theories and/or 
experimental measurements. Owing to the limited space for discussion, the 
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FIGURE 2. Stability diagram of linear stability theory with -, the neutral curve of the parallel 
theory and various neutral curves of non-parallel theories : ---, inner maximum u' (Gaster 1974) ; 
-.-, kinetic energy integral E (Gaster 1974) ; --, inner maximum u' (Saric & Nayfeh 1975). The 
Navier-Stokes calculations discussed in this paper are indicated by the horizontal bars. 

calculations were selected on their possible merit to either lend support to the various 
theories or to help explain certain discrepancies. In particular, calculations were 
performed to allow comparison with the results of linear stability theory calculations 
(parallel theory) by Jordinson, of the non-parallel theories by Bouthier (1972, 1973), 
Gaster (1974), Saric & Nayfeh (1975, 1977), Van Stijn & Van de Vooren (1983), 
Bridges & Morris (1987), and of the experiments of Ross et al. (1970) as well as 
Kachanov et al. (1979). 

The calculation cases which will be discussed are identified in figure 2. In this 
stability diagram of dimensionless frequency parameter F (defined as F = /3v/uZ,; B 
is the dimensional frequency) versus the Reynolds number based on the displacement 
thickness, Re,, = 0, &/F, neutral stability curves of several non-parallel theories are 
displayed. 

The neutral loops as obtained by Gaster (1974) are based on two different stability 
criteria, namely for the kinetic energy integral E and for the inner maximum of u'. 
(The labelling for the neutral curves given in figure 2 of Gaster (1974) for the inner 
and outer maximum of u' are reversed; Gaster 1983, private communication). 
Further, the neutral loop by Saric & Nayfeh is displayed. For comparison the neutral 
curves obtained from standard parallel theory is given also. It is obvious that 
considerable deviations exist between the various non-parallel results, especially for 
the higher frequencies and for branch I and thus also for the critical Reynolds 
number. 

- _  



Non-parallel stability of a f i t -p la te  boundary layer 32 1 

Case F Dist. 

1 1.4 x 10-4 a 
b 

2 1 . 5 6 ~  a 
3 2.6 x 10-4 a 

b 
4 3.0 x 10-4 a 

b 

Ax 

0.0133 
0.0138 
0.0120 
0.0078 
0.0063 
0.0069 
0.0063 

A!i 
0.251 1 
0.2724 
0.2302 
0.1674 
0.1660 
0.1674 
0.1660 

At 

0.01 12 
0.00345 
0.0101 
0.0060 
0.00151 
0.0052 
0.00131 

2 0  

0.0839 
0.5403 
0.6839 
0.3039 
0.3039 
0.3039 
0.3039 

Re,,(%) x 
450 3.378 
400 3.588 
450 2.400 
300 1.186 
300 1.20 
300 1.049 
300 1.260 

Y 
17.07 
17.71 
15.65 
11.38 
13.28 
11.38 
13.28 

TABLE 1. Summary of parameters used for the four calculations cams. a, Disturbance at the 
inflow boundary ; b, disturbance at the wall. 

Therefore, it is of interest how our results from the direct NavierStokes 
simulations compare with theory and experiments and if they confirm any of the 
results of the various non-parallel theories. In  this paper, results of the 4 calculation 
cases shown in figure 2 are discussed in detail. The horizontal bars in figure 2 indicate 
the four calculation cases. The beginning and end of the bars identify the actual 
location of the inflow and outflow boundary, respectively, of the integration domain 
used in the numerical simulation. 

should at first 
exhibit decay of the disturbances when proceeding in the downstream direction and 
then, inside the neutral loops in the region of instability, the disturbances should be 
amplified. Further downstream, after leaving the unstable region, disturbances 
should be damped again. 

With increasing frequencies from case 1 to case 4 our numerical results should 
identify an increasing deviation from the stability behaviour of the standard parallel 
theory. For case 3 with F = 2.6 x lov4 the flow should already be stable according to 
parallel theory. Case 4 with F = 3.0 x is only unstable according to the non- 
parallel results by Saric & Nayfeh while it is stable according to Gaster, for both the 
first maximum of u‘ and the kinetic energy integral. Therefore, at  this highest 
frequency, the biggest discrepancies should be expected between our NavierStokes 
results and parallel theory as well as the various non-parallel models. 

To ensure that our results were of reliable accuracy and to allow a detailed 
quantitative comparison with results of the various theories, numerous test 
calculations with increased and decreased grid sizes Ax, b y  were performed. In this 
way the effect of grid sizes on our results, in particular on amplitude distributions 
with respect to y and on growth rates, was investigated in detail (see Hoeptner 1981). 
Based on such investigations, grid sizes were selected for the calculations presented 
here that were small enough to ensure that the results are ‘correct ’, in the sense that 
a further decrease of Ax, A y  would only lead to insignificant changes in the numerical 
results. 

The parameters used for the four calculation cases are summarized in table 1. For 
a11 four cases the reference Reynolds number was Re = lo6, with, for example, Om = 
30 m/s, F = 1.5 x 

Typical results as they were obtained directly from our Navier-Stokes simulations 
for case 1 are shown in figures 3 and 4. There, the instantaneous disturbance 
quantities of u’, v’, and w’ are displayed in the entire (5,  y) integration domain at  a 
time instant after the disturbances have propagated through the entire integration 
domain and a time-periodic state is reached everywhere in the domain. Figure 3 
shows the disturbance quantities u‘, v‘ in perspective representation with respect to 

Thus, for example, case 1, with frequency parameter F = 1.4 x 

m2/s and = 0.05 m. 
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FIQIJRE 4. Isolines of disturbance vorticity w’ in the (x, y)-plane of the entire integration domain 
after the time periodic state was reached (case 1). Regions of negative w’ are shaded. Vertical bars 
indicate location of the neutral points of branch I and branch 11, respectively, of the parallel linear 
theory. 

x, y .  In addition, in figure 4 the disturbance vorticity is presented in a contour plot 
of lines w‘ = constant in the (x, y)-plane. These plots indicate already, at  least in a 
qualitative manner, the stability behaviour for this case. Regions of stability (decay 
of the disturbances) and regions of instability (growth of the disturbances) can be 
clearly observed. For further analysis, the instantaneous data fields as displayed in 
figures 3 and 4 are processed to allow quantitative comparison with theoretical and 
experimental results. 

For comparison with eigenfunctions of linear theory the data are Fourier analysed 
in time for every x and y location according to 

K 

U ’ k ,  y ,  Y )  = uo(x, Y )  + z (u&, Y) cos (iPt+ @& (3.1) 

where uo(x,y) is the change of the mean flow.? Analogously this is done for v’. For 
the linear calculations considered here, only the first harmonic (or fundamental) is of 

i-1 

interest, namely 

Figure 5 shows the results of such a Fourier-analysis for case 1. The Fourier 
amplitudes are plotted with respect to x ,  y in perspective representation as in figure 
3. From the amplitude distributions for all x-stations, such as shown in figure 5 ,  
growth curves for any quantity can be determined. From the growth curves 
amplification rates can be extracted for comparison with both parallel and non- 
parallel theories and experimental measurements. 

3.1. Amplitude distributions 
Amplitude distributions (Fourier amplitudes versus distance from the wall) of the 
disturbance velocity components u‘ and v‘ for the calculation case 1 and 4 are plotted 
in figures 6 and 7. These amplitude distributions can be directly compared with the 

f uo is the deviation of the time-averaged Navier-Stokes solution and the solution of the steady 
Navier-Stokes equations. Thus this deviation is due to nonlinear interactions. For the present 
calculations uo is therefore very small and can be neglected. 
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FIGURE 6. Fourier amplitudes (normalized by the maximum of u’) versus y of the 
u‘- and v’-disturbances for various downstream locations Red, (case 1, F = 1.4 x 

eigenfunctions obtained from linear stability theory. In figure 6 the amplitudes are 
plotted versus y and in figure 7 versus a normalized coordinate y* = y/6, (6, is the 
local displacement thickness). The amplitudes are normalized such that the first 
maxima of u‘ are equal to 1. Thus, with normalization factor k = l/ukax1 the actual 
amplitudes are related to the normalized ones shown in figures 6 and 7 such that 

‘norm’ denotes the 
normalized quantities. From figures 6 and 7 one can observe that with changing Re, 
(that is, for different downstream locations) not only the locations of the maxima and 
of the zero values are shifted but, in addition and in spite of the normalization, the 
amplitude values can vary considerably at  other y locations. This is particularly true 
for the v’ distributions. It is also obvious from these figures that the variation of the 
normalized amplitude distributions is significantly different for the two rep- 
resentations, depending on whether they are plotted with respect to y or y*. 

From these observations it is already clear that amplification rates would be 
strongly dependent on the criteria used. For example, from figure 6 one would 
obtain disturbance growth in x over a wide range of y for both u’ and v’. Although 
based on the inner maximum of u‘ the flow would be judged to be neutrally stable, 
the growth rates would be very strong beyond the corresponding maxima. This is 
also true for v‘ in figure 6. In contrast, in figure 7 this behaviour is aignificantly 

u’ = u’ ,,,,/k and v’ = v&,, (Re)i/k where the subscript 
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FIGURE 7 .  Fourier amplitudes (normalized by the maximum of u’) versus y* (y* = y/dJ of the 
u’- and v‘-disturbances for various downstream locations Re,, (case 1, F = 1.4 x loe4). 

different. Based on the u‘ distributions, for wide ranges of y, the amplitudes decrease 
when passing downstream at constant y* (for example beyond the first maxima and 
below the zero locations) and therefore the flow could be termed stable, if only the 
behaviour a t  these y* locations were to be considered. However, a t  other y* locations 
this behaviour is opposite with the disturbances growing in the downstream 
direction. A similar behaviour can be observed for the v’ component in figure 7 .  
The corresponding plots for the other calculation cases, which are not shown here, 
exhibit a similar qualitative behaviour to that observed in figures 6 and 7. 

How do the amplitude distributions of the NavierStokes solution compare with 
linear stability theory ? In figure 8 the amplitudes of our Navier-Stokes calculations 
for case 1 are plotted together with the eigenfunctions obtained from (parallel) linear 
stability theory calculations (Kummerer 1973 ; these linear stability results are 
practically identical to those of Jordinson 1970). For plotting the amplitudes in 
figure 8 the same normalization is used as before so that the inner maxima of u’ are 
equal to 1. The good agreement between the Navier-Stokes solution and linear 
stability theory results is indeed remarkable. Comparison for the other cases is 
omitted here, owing to lack of space; however, the agreement is in all cases of the 
same quality as for case 1. This good agreement supports the assumption made in 
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0 2 4 6 8 0  2 4 6 8 
Re,, = 1000 Y* Y* 

FIQURE 8. Comparison of the amplitude distributions (normalized by the maximum of u’) for u’ and 
w’ of the Navier-Stokes calculations (-) with those of the parallel linear stability theory (----) 
for various Red, (case 1,  F = 1.4 x W4). 

non-parallel theory that the non-parallel effects on the eigenfunctions are negligible 
(of order Re-:). 

Bridges & Morris presented non-parallel corrections of the eigenfunctions of the 
linear stability theory (their figure 5 ) .  In figure 9 the real and imaginary parts of the 
amplitudes from the Navier-Stokes solution and eigenfunctions of the linear 
stability theory are compared. The deviations between the Navier-Stokes solution 
and the linear stability theory are of similar magnitude as in Bridges & Morris. 
However, for the imaginary part of the eigenfunction, the correction as suggested by 
the Navier-Stokes solution is in the opposite direction to that of Bridges & Morris. 

3.2. Spatial-disturbance amplification 
The results presented in figures 6 and 7 suggested already that the magnitude of the 
spatial growth of the disturbances was strongly dependent on the specified y or y* 
location or on which variable would be considered. For other criteria, such as local 
kinetic energy e ,  kinetic energy integral E etc. the behaviour would again be different 
altogether. 
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FIGURE 9. Comparison of real and imaginary parts of the amplitude distribution as well as the total 
amplitude distribution (normalized by the maximum of u’) of the Navier-Stokes calculation 
(-) with the parallel linear stability theory (----) for Redl = 600 and Redl = 800 (case I ,  
F = 1.4~ 10-4). 

To shed light on how different criteria affect the spatial-amplitude behaviour, 
results based on our Navier-Stokes calculations will be presented and discussed here. 
The effects of the following criteria were investigated : 

inner (first) maximum of the u’ amplitude distribution; 
outer (second) maximum of the u’ amplitude distribution ; 
maximum of the v‘ amplitude distribution ; 
wall (first) maximum of the o’ amplitude distribution ; 
outer (second) maximum of the w’ amplitude distribution ; 
time-averaged absolute value of o’ integrated over the 
entire boundary layer ; 
contribution of the a’-component to  the kinetic-energy 
integral ; 
contribution of the v’-component to the kinetic-energy 
integral ; 
kinetic energy integral ; 
following lines y = constant ; 
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FIGURE 10. Normalized amplification curves of the NavierStokes calculation (case 1, 
F = 1.4 x lO-*).for various criteria in comparison with the parallel linear stability theory. 

(4 following lines 7 = constant (7 = y/(2x)i, boundary-layer 
coordinate, 9 = 1.21677y*). 

The maxima of the amplitude distributions required for some of the criteria above 
were determined from the discrete amplitude functions by use of spline inter- 
polations. For the evaluation of the integrals from 0 to oc) for items ( g ) ,  (h)  and ( i )  
the condition for exponential decay (equation (2.16)) was employed to continue the 
integration outside the Navier-Stokes integration domain. 

Amplification curves for ln(A/A,,,) versus R e ,  for various stability criteria are 
plotted in figure 10. The amplitudes are normalized by their respective minimum 
values so that the normalized curves have relative minima for 1. For comparison, the 
amplification curve of parallel linear theory is also shown in figure 10. This curve is 
obtained by integrating in the x-direction considering that a, (dimensionless with the 
displacement thickness 8,) is a function of x (from linear theory) using the 
relationship 

It can be observed that for all criteria, except for the second maximum for w', growth 
rates are higher than those of linear theory. The very strong effect of the various 
criteria on the final amplitudes attained a t  branch I1 is indeed remarkable. 
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450 650 850 1050 
Red, 

FIGURE 12. Normalized amplification curves of the Navier-Stokes calculation (case 1 ,  F = 
1.4 x for following the u'-disturbance in the downstream direction at (a )  constant y or ( b )  at 
constant ?,I. 

From amplification curves such as shown in figure 10 the neutral points of our 
NavierStokes calculations can be determined by identifying the maxima and 
minima. Also the growth rates a, of the Navier-Stokes solution are determined from 
such amplification curves using the formula 

To allow a meaningful comparison, growth rates a, which are determined from 
growth curves based on criteria with quadratic terms, such as S ; d 2 d y ,  are 
multiplied by a factor &. 

A quantitative comparison of the growth rates obtained from amplification curves 
such as shown in figure 10 is given in figure 11. To determine the growth rates, 
equation (3.4) was employed where the differentiation is carried out numerically 
using a least-square fit method with piecewise fitted polynomials of second order. 
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I - -  Unstable region, parallel theoq- 

t i  t -  Unstable region, y = 10 __ 
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FiGURE 13. Locations of the neutral points in the (y, Re,,)-plane when following the disturbance at  
constant y (case 1, F = 1.4 x ; x , ddisturbance ; + , v’-disturbance ; , local kinetic energy. 

Results are shown for cases 1 , 3  and 4. The growth rates at are plotted versus Resl for 
different criteria, and are compared with the a, of parallel linear stability theory. The 
curves obtained from the Navier-Stokes solution for the second maximum of u’ are 
somewhat wavy. This is due to the numerical differentiation. The u’-values for the 
second maximum are already very small, in particular for cases 3 and 4 with no 
amplification, so that numerical round-off errors start to play a role. 

From figure 11 one can observe that for all criteria shown, except for the first 
maximum of a’, the a,-values of our Navier-Stokes solution are consistently smaller 
than those of the parallel theory, thus resulting in a larger disturbance amplification 
in the Navier-Stokes solution than in the parallel linear stability theory. For the first 
maximum of u’ the a,-values of the Navier-Stokes solution are at  first slightly larger, 
and further downstream smaller, than the a, of the parallel linear theory. The 
deviations of the non-parallel results from the linear stability results show for all 
criteria qualitative similarity that is independent of the disturbance frequency. 

In experimental investigations the stability criteria are often based on the 
amplitude behaviour along lines of constant physical distance from the wall (y = 
constant) or along lines of constant 7. In figure 12 typical amplification curves for u’ 
are shown, based on constant y and constant 7, respectively (normalized with their 
respective minimum values). It is obvious that drastically different results are 
obtained depending on whether the curves are versus 7 or y and depending on which 
values are used for y or 7. In particular, the neutral points are also shifted 
considerably depending on the chosen y or 7 position. This effect is summarized in 
figures 13 and 14 where, for case 1, the locations of the neutral points are plotted for 
the two situations of following the disturbance a t  either y = constant or 7 = 
constant. In these figures the neutral positions are shown for the u’-disturbance, the 
v’-disturbance and for the local kinetic energy of the disturbance e = TP +P.  For 
comparison, the neutral locations (a, = 0) of the linear stability theory are also 
shown. It is now obvious that the upstream and/or downstream shift of the neutral 
points, with different constant y or 7, is considerable. Especially for the a’- 
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I .  I. d 

450 650 850 1050 
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FIQURE 14. Locations of the neutral points in the (v ,  Rea)-plane when following the disturbance at 
wnsttbnt 4 (case 1, F = 1.4 x lo+); x , r'-disturbance; +, v'-disturbance; a, local kinetic energy. 

disturbance an ambiguous behaviour exists as the y or 7 location of the 180' phase 
shift (of the u' eigenfunction) is approached. In  figure 13 for y = constant, 
approaching the 180' phase-shift location from the wall, the unstable region 
increases more and more. Approaching the 180' phase-shift location from the edge of 
the boundary layer the unstable region appears to shrink towards zero. For the 
representation with following on lines 7 = constant in figure 14 this behaviour is 
exactly opposite. 

From this it is obvious that, if the stability behaviour is to be judged by following 
the u'-disturbance in the downstream direction at  constant y or constant 7, it is 
essential to stay away from the 180' phase-shift location. For the local kinetic 
energy, as also shown in figures 13 and 14, the variation of the location of the neutral 
points is still considerable, yet the ambiguity close to the 180" phase-shift point is no 
longer present. From figure 13, one can also observe that the non-parallel effects on 
the location of the neutral points when following on lines y = constant are strongest 
within approximately four displacement thicknesses and are practically negligible 
further away from the wall. 

3.3. Comparison with non-parallel theories and experiments 
While the question is still unresolved as to what criterion should best be used for 
defining stability it is of the utmost importance, however, that for comparison 
among various theories and in particular for comparison of theory and experiment, 
identical criteria me used. 

As discussed previously, taking the effect of the non-parallel base flow into 
consideration, as in the various non-parallel theories, results in growth rates which 
are strongly dependent on the underlying criteria. This effect is mainly due to the 
fact that the eigenfunctions change with the s-location and to a lesser degree due to 
a possible change of the eigenvalue a, itself. A comparison of the growth rates versus 
x of our NavierStokes results with results of the non-parallel theory by Gaster 
are shown in figure 15. Results are shown for three criteria, namely for the 
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FIQURE 15(a). For caption see facing page. 

inner maximum of u', for the outer maximum of u' and the kinetic energy 

P = 3.0 x lop4 (cases 1 and 4;  disturbance generation is by blowing and suction, see 
$2.2). For reference, the curves from standard parallel (spatial) theory are shown 

E = J" (-'2 u +d2)dy ,  and for two different frequencies F = 1.4 x lop4 and 
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FIQURE 15. Comparison of growth rates a, of the Navier-Stokes solution (-) with the parallel 
linear stability theory and the non-parallel theory by Gaster (1974) for various criteria. (a)  Case 1, 
F = 1.4~ ( b )  case 4, F = 3.0 x 
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FIGURE 16(a). For caption see facing page. 

also. It is obvious that for all cases and for all criteria, comparison between the 
NavierStokes solution and the non-parallel theory by Gaster is remarkable. For all 
other calculation cases not shown here agreement with the theory by Gaster is as for 
case 1 and 4. Almost immediately downstream of the disturbance generation the 
curves practically coincide (the local solution close to the disturbance generation is 
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FIQURE 16. Comparison of amplification curves of the Navier-Stokes solution (-) with the 
parallel linear stability theory (----) and the non-parallel theory by Gaster (1974) (----) for various 
criteria (disturbances generated by localized blowing and suction). (a)  case 1, F = 1.4 x 
normalized by the minimum amplitude; (b)  case 4, F = 3.0 x normalized at Re,, = 460. 
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FIQURE 17. Location of the neutral points in the (q, Re,,):plane when following the disturbances at 
constant q .  Comparison of the NavierStokes solution (case 2, F = 1.56 x ( x ) with 
experimental measurements by Kachanov et al. (1979) (0 )  and the non-parallel theory by Saric & 
Nayfeh (1975) (----). 

not shown). The slight wavyness is due to the numerical differentiation which is 
required to determine the growth rates from the amplification curves using equation 
(3.4). In contrast to the growth rate curves shown previously in figure 11, here no 
smoothing is employed. Rather, the data are calculated directly in order to allow an 
unbiased comparison. The amplification curves of the NavierStokes solution versus 
Resl from which the growth rates are determined are shown in figure 16. For 
comparison, amplification curves obtained from the non-parallel theory by Gaster 
and from linear stability theory are shown also. As before, the agreement between 
the NavierStokes solution and the non-parallel theory by Gaster is very good, while 
the deviation from the parallel theory appears quite significant. 

Kachanov et al. (1979) experimentally investigated the non-parallel effects. The 
location of the neutral points for F = 1.56 x obtained from these experiments by 
following the development of the u'-disturbances at  constant 9 are plotted in figure 
17 in the (r,Re,,)-plane as in figure 14 for case 1. For comparison, the neutral 
locations as obtained from our Navier-Stokes calculation for case 2 are shown 
together with the results of the non-parallel theory by Saric & Nayfeh (1977). The 
locations of the phase reversal for u' as determined from the experiments and the 
Navier-Stokes calculations are plotted also. Below the 180" phase-shift location 
the agreement between the Navier-Stokes results and experiments, as well as with 
the non-parallel results by Saric & Nayfeh, is quite reasonable when considering the 
difficulties in accurately determining the neutral location from experimental 
measurements. However, close to the wall the theory by Saric & Nayfeh consistently 
predicts lower-Reynolds-number neutral locations (for branch I) and higher- 
Reynolds-number neutral locations (for branch 11) than our Navier-Stokes results. 
Above the 180" phase-shift location, agreement between NavierStokes, non-parallel 
theory, and measurement is much less satisfactory. The non-parallel results by Saric 
& Nayfeh predict neutral locations at higher Reynolds numbers than the experiments 
for both branch I and branch 11. Our Navier-Stokes calculations yield neutral 
locations that are at  higher Reynolds numbers for branch I and at  lower Reynolds 
numbers for branch I1 than those obtained from the non-parallel theory by Saric & 
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FIGURE 18 (a, b). For caption see facing page. 
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FIQURE 18. Neutral locations obtained from the Navier-Stokes calculations for cases 1, 3 and 4 
together with the neutral curves of the parallel linear stability theory (-) and of the non-parallel 
theory by Gaster (1974) for various criteria : (a) inner and outer maximum of u', (b) kinetic energy 
integral E ,  ( c )  u' at y/6 = 0.15, comparison with experiment of Ross et al. (1970). Note: in the figure 
caption for the inner and outer maximum of u' in Gaster's (1974) paper the notations should be 
interchanged (Gaster, private communication.) 

Nayfeh. Thus, for this criterion (9 = constant), the unstable region obtained from 
our Navier-Stokes-calculations would always be somewhat smaller than that of the 
non-parallel theory by Saric & Nayfeh. 

In figures 18 and 19 neutral points obtained from the Navier-Stokes calculations 
are shown together with the neutral curves for various non-parallel theories. For 
comparison, the neutral curve of the standard parallel theory is given also. Figure 
18 (a) shows the neutral curves obtained by Gaster for the inner and outer maximum 
of the u'-disturbances. For the neutral points based on the kinetic energy E ,  as 
obtained from the Navier-Stokes solution, agreement with the neutral points by 
Gaster is equally good (figure 18b). Here, case 4 of our calculation just barely yields 
a neutral location. 

How do our neutral points compare with those obtained experimentally 1 In figure 
18(c) the neutral points of the Navier-Stokes calculation using the same criteria as 
for the experimental points, namely y/6 = 0.15, are compared with those of Ross 
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FIQURE 19. Examples of fortuitous agreement between the neutral points obtained from 
simulations for one flow quantity and theoretical predictions based on another. Neutral locations 
obtained from the Navier-Stokes calculations for the cases 1,3 and 4 (0)  together with the neutral 
curves of the parallel linear stability theory (-) and of the non-parallel theories: (a) - --, Bridges 
& Morris (1987), criterion: maximum of w ' ;  ( b )  ---, Saric & Nayfeh (1975), criterion: inner 
maximum of u', compared with Navier-Stokes solution, criterion : u' at y = 10. 
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et al. and the corresponding neutral curve by Gaster. It is obvious that the neutral 
points obtained from the Navier-Stokes calculation still differ significantly from the 
experimental neutral location. On the other hand the Navier-Stokes neutral points 
almost coincide with the neutral curve by Gaster. 

In  their paper, Bridges & Morris (1987) displayed a neutral curve based on the 
concept that there exists a unique definition of the non-parallel effects on the 
wavenumber that is independent of the effects of streamwise variation of the 
wavenumber. Coincidentally, this is the same total result as would be obtained if the 
maximum of the v‘-fluctuation were considered. Therefore neutral points obtained 
from our Navier-Stokes calculations for the maximum v‘ should be directly 
comparable with the neutral locations as obtained from this theory. In figure 19(a) 
the neutral curve of Bridges & Morris is shown together with the neutral location 
obtained from calculations 1,  3 and 4. The neutral points of our Navier-Stokes 
solution based on the same criteria practically coincide with the neutral points 
obtained from the non-parallel analysis. Finally in figure 19(b) the neutral loop 
obtained by Saric & Nayfeh is reproduced. It yields an unstable region that is larger 
than any of the neutral loops shown so far. I n  their first paper Saric & Nayfeh (1975) 
did not define the underlying criterion. In  the later paper (Saric & Nayfeh 1977) they 
argued that their neutral curve would be for the inner maximum of u’. The neutral 
points for the inner maximum of u’, as displayed in figure 18 (a) ,  deviate considerably 
from these results. Therefore we searched for another criterion that could possibly 
yield an unstable region as large as the one given by Saric & Nayfeh. As is obvious 
from figure 13, using u’, d or the local kinetic energy far away from the wall (at least 
56,) and following the disturbances downstream a t  constant y, yields a larger 
unstable region than using, for example, the inner maximum of u’ as a criterion. 
These neutral points are also displayed in figure 19 ( b )  and, as can be observed, almost 
coincide with the neutral points of Saric & Nayfeh. However, to make it clear, this 
agreement is indeed fortuitous, because the theoretical neutral curve was obtained 
for the inner maximum of u’ as the underlying criterion. 

In  summary, our Navier-Stokes calculations confirm that the discrepancy between 
the experimental neutral locations and the parallel linear-stability theory cannot be 
explained by non-parallel effects. Therefore, other effects must be responsible such 
as, for example, (a )  a very small adverse pressure gradient, (b )  the disturbance source 
(vibrating ribbon) too close to the neutral location and ( c )  nonlinear effects. With 
regard to (a)  it is well known that adverse pressure gradients are strongly 
destabilizing and that only small pressure gradients would be required to enlarge the 
unstable region such as defined by the experimental measurements by Ross et al. In  
experiments it is very difficult to accurately maintain a uniform pressure gradient. 
Possible reasons for ( b )  and (c) are the facts that the growth rates for the higher 
frequencies (where the deviations between theory and experiments are most 
significant) are getting very small. In  order to obtain reliable signal responses that 
are not totally obscured by the background turbulence, the experimenter has two 
choices : either he can (virtually) move the disturbance source closer to the branch I 
location (so as to minimize disturbance decay in the stable region) or he can increase 
the disturbance amplitude. Therefore, the neutral location would be affected if the 
disturbance source is too close to the branch I location. If input amplitudes are too 
big, nonlinear effects, both two- and three-dimensional, may play a role and thus 
influence the neutral location. However, our nonlinear Navier-Stokes calculations 
(Konzelmann 1983) using larger amplitude two-dimensional disturbances have 
shown, that two-dimensional nonlinear effects have a minimal influence on the 
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neutral locations, especially for branch I ,  when disturbance amplitudes u‘/Um are 
smaller than 2 YO. Therefore, it is unlikely that the discrepancy between experiments 
and theory can be explained by finite-amplitude effects. Because of the considerable 
difficulties in performing stability experiments, these experiments should be repeated 
with great care to see if the earlier measurements can be confirmed. In doing that, 
all experimental conditions should be documented in greater detail than before to 
facilitate comparison with theory or numerical simulations. 

3.4. Wavenumbers of the disturbance waves and comparison with linear stability 
theory 

The effect of the non-parallel mean flow on the wavenumber can be investigated by 
a thorough comparison of the results obtained from the Navier-Stokes calculations 
with those obtained from the linear (parallel) stability theory. The wavenumber a, 
(dimensionless with the reference length L )  is calculated from the Navier-Stokes 
solution by using the phases that result from a Fourier analysis of the instantaneous 
disturbances (see (3.2)). 

The relationship for calculating the wavenumbers a, are 

Therefore, different wavenumbers, a,%, arv, aTw can be calculated depending on 
whether they are obtained from the u’, v’ or o’ disturbances, respectively. I n  addition 
these wavenumbers are dependent on x and y while standard parallel theory would 
of course only yield a dependency on x, a, = a,(.). 

For calculation cases 1 and 4 the wavenumbers a,. as obtained from the u’, v’ and 
w’ disturbances are shown in figure 20. For comparison, the curves from linear- 
stability theory are given also. The Navier-Stokes results are shown for two different 
distances from the wall. It is obvious that the wavenumber is strongly dependent on 
the distance from the wall. I n  particular, closer to the wall the wavenumber relations 
with respect to x are somewhat different depending on whether they are obtained 
from the u’, v’ or w‘ disturbance field. On the other hand, further away from the wall, 
the wavenumber relations are essentially the same, independent of whether they are 
determined from u’ or v’. This is consistent with our earlier observation in connection 
with the growth rates aa, namely that non-parallel effects are strongest close to the 
wall and that their influence on the different variables becomes negligible far away 
from the wall. 

4. Conclusions 
The results from our Navier-Stokes calculations clearly indicate that the concept 

by Bouthier of a partial and total instability is not a reasonable one, even if, as he 
suggested, the instability criterion is based on the local kinetic energy and following 
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FIQURE 20(a). For caption see facing page. 

the disturbance development at  constant 7. According to Bouthier’s definitian, 
regions of total instability for a given frequency are those where disturbances are 
amplified at  all distances 7 from the wall. For regions of partial instability, 
amplification occurs at  least one distance 7 from the wall. 

With this concept of partial and total instability Bouthier claims good agreement 
of his results with experimental measurements (for the neutral curves), However, our 
results and results by Van Stijn & Van de Vooren have shown (Van Stijn & Van de 
Vooren, figure 2) that for larger 7-values (7 > 17, for F = 1.4), based on his criterion, 
disturbances would be damped at  all frequencies and therefore no total instability 
would exist. This fact escaped Bouthier’s attention because he limited his calculation 
to 7 = 4. If he had considered values 7 > 4 he would have arrived a t  the same 
conclusion. 

The comparison of Bouthier’s results with experiments is meaningless for another 
reason. The experimental neutral points by Schubauer I% Skramstad, Ross et al., and 
Kachanov et al. were obtained for the u’-disturbances (following at  constant y, 
constant 7 or the maximum of u’) and not for the local kinetic energy. As can be 
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FIGURE 20. Wavenumber a, versus Re, for two y locations y1 and yz aa determined from u', v' and 
w'. (a) case 1, F = 1 . 4 ~  y1 = 2.5{, ya = 10.0; ( b )  case 4, F = 3 . 0 ~  lo-', y1 = 1.66, ya = 6.64. 
Navier-Stokes solution: -; uru; ---, ars; ---, urw. --- , parallel theory. 

observed from comparison of figures 13 and 14 the location of the neutral points is 
significantly different if the local kinetic energy is considered instead of the u'- 
disturbance itself. 

This wide variation of the location of the neutral points for the u'-disturbance 
when following different trajectories q = constant or y = constant as obtained from 
our Navier-Stokes calculations explains the often contradictory results obtained 
from experimental stability investigations : by just following the disturbance at  
different 7 or y = constant the neutral locations may be shifted by as much as 
200 Re,. The most extreme variations of the neutral locations are experienced near 
the 180" phase-shift locations. Therefore, any comparisons of theory with 
experiments for y or 

The close agreement of the neutral curve given by Saric & Nayfeh (1975) cannot 
be due to non-parallel effects. Rather the close agreement was fortuitous and was 
caused by an error in the analysis. With a correction of their analysis their results 
essentially agree with those of Gaster (1974) when identical criteria are considered 
(Saric, private communication). 

close to the 180' phase-shift location are suspect. 
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The major non-parallel effects can be summarized as follows: 
(a) There is no universal amplification rate at as in the parallel theory. Rather, 

growth rates depend strongly on the criteria used (variables, distances from wall, 
etc.). 

( b )  Depending on the underlying criteria, the neutral location and therefore the 
size of the unstable region can vary considerably. 

( c )  There is no universal wavenumber a,. as in parallel theory. As for the growth 
rate ai, the wavenumber a, is strongly dependent on the criteria used. 

( d )  The non-parallel effects are strongest closer to the wall (inside the boundary 
layer) and decrease with increasing distance from the wall. 

However, non-parallel effects do not : 
(a) influence the amplitude and phase distributions as obtained from parallel 

linear-stability theory, 
( b )  fully account for the discrepancy between experimental and theoretical 

(parallel theory) neutral curves. 
The detailed and accurate Navier-Stokes calculations discussed in this paper have 

shown that the amplitude and phase distributions with respect to y practically 
coincide with those obtained from the eigenfunctions of linear (parallel) stability 
theory (spatial formulation). Therefore, the use of the amplitude distributions of the 
parallel theory as a first approximation for an extension of the theory to include non- 
parallel effects is well justified (for example Bouthier 1972, 1973; Gaster 1974; Saric 
& Nayfeh 1975, 1977 ; Van Stijn & Van de Vooren 1983 ; Bridges & Morris 1987). 
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